Multiuser Detection for CDMA Systems

Outline

- Overview of DS/CDMA systems
- Concept of multiuser detection (MUD)
- MUD algorithms
- Limitations of MUD
- Conclusion

DS/CDMA Systems

- A conventional DS/CDMA system treats each user separately as a signal, with other users considered as noise or MAI – multiple access interference
- Capacity is *interference-limited*
- Near/far effect: users near the BS are received at higher powers than those far away
 - those far away suffer a degradation in performance
 - Need tight power control

Multiuser Detection

- Multiuser detection considers all users as signals for each other -> joint detection
 - Reduced interference leads to capacity increase
 - Alleviates the near/far problem
- MUD can be implemented in the BS or mobile, or both
- In a cellular system, base station (BS) has knowledge of all the chip sequences
- Size and weight requirement for BS is not stringent
- Therefore MUD is currently being envisioned for the uplink (mobile to BS)

Concept of MUD

- Simplified system model (BPSK)
 - Baseband signal for the kth user is:

$$u_k(t) = \sum_{i=0}^{\infty} x_k(i) \cdot c_k(i) \cdot s_k(t - iT - \tau_k)$$

- $x_k(i)$ is the ith input symbol of the kth user
- $c_k(i)$ is the real, positive channel gain
- $s_k(t)$ is the signature waveform containing the PN sequence
- τ_k is the transmission delay; for synchronous CDMA, $\tau_k{=}0$ for all users
- Received signal at baseband

$$y(t) = \sum_{k=1}^{K} u_k(t) + z(t)$$

- K number of users
- *z(t)* is the complex AWGN

Concept of MUD (2)

Sampled output of the matched filter for the kth user:

$$y_{k} = \int_{0}^{T} y(t) s_{k}(t) dt$$

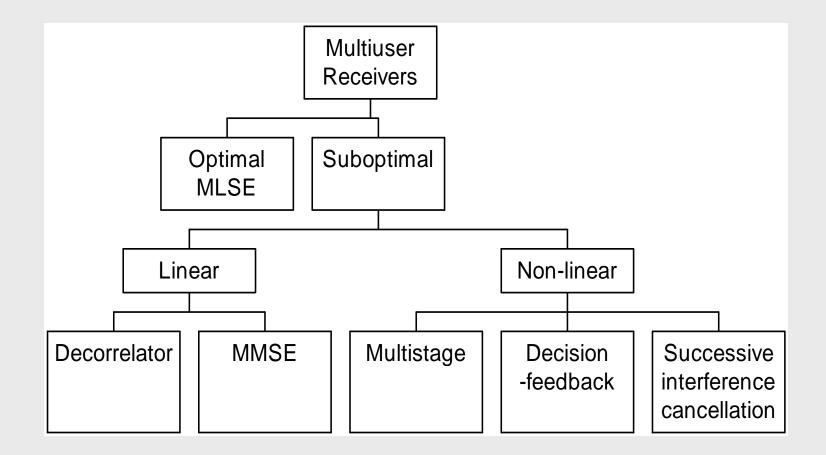
= $c_{k} x_{k} + \sum_{j \neq k}^{K} x_{j} c_{j} \int_{0}^{T} s_{k}(t) s_{j}(t) dt + \int_{0}^{T} s_{k}(t) z(t) dt$

- 1st term desired information
- 2nd term MAI
- 3rd term noise
- Assume two-user case (K=2), and

$$r = \int_{0}^{T} s_1(t) s_2(t) dt$$

Concept of MUD (3)

Outputs of the matched filters are:


$$y_1 = c_1 x_1 + r c_2 x_2 + z_1$$
 $y_2 = c_2 x_2 + r c_1 x_1 + z_2$

- Detected symbol for user k: $\hat{x}_k = \operatorname{sgn}(y_k)$
- If user 1 is much stronger than user 2 (the near/far problem), the MAI term rc_1x_1 present in the signal of user 2 is very large
- Successive Interference Cancellation
 - decision is made for the stronger user 1: $\hat{x}_1 = \operatorname{sgn}(y_1)$
 - subtract the estimate of MAI from the signal of the weaker user:

$$\hat{x}_{2} = \operatorname{sgn}(y_{2} - rc_{1}\hat{x}_{1})$$

= $\operatorname{sgn}(c_{2}x_{2} + rc_{1}(x_{1} - \hat{x}_{1}) + z_{2})$

- all MAI can be subtracted from user 2 signal provided estimate is correct
- MAI is reduced and near/far problem is alleviated

MUD Algorithms

Optimal MLSE Detector

- Maximum-likelihood sequence estimation (MLSE) is the optimal detector (Verdú, 1984)
- For synchronous CDMA, search over 2^K possible combinations of the bits in vector x

$$\hat{x} = \arg\left\{\max_{x \in \{-1,+1\}^{K}} \left[2y^{T}Wx - b^{T}WRWb\right]\right\}$$

- For asynchronous CDMA, use Viterbi algorithm with 2^{K-1} states
- Both too complex for practical implementation

Decorrelator

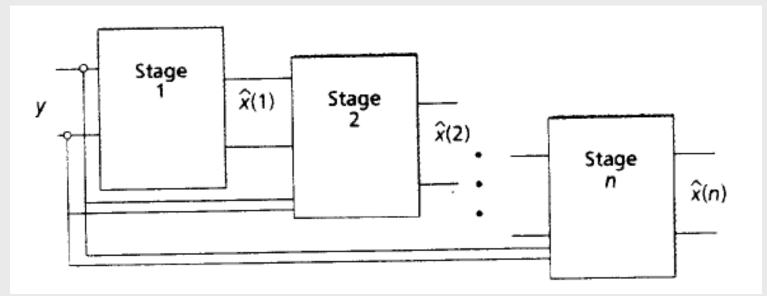
Matrix representation

 $\underline{y} = RW\underline{x} + \underline{z}$

- where $\underline{y} = [y_1, y_2, \dots, y_K]^T$, R and W are KxK matrices
- Components of *R* are given by cross-correlations between signature waveforms s_k(t)
- *W* is diagonal with component $W_{k,k}$ given by the channel gain c_k of the k^{th} user
- <u>z</u> is a colored Gaussian noise vector
- Solve for <u>x</u> by inverting R

$$\underline{\widetilde{y}} = R^{-1} \underline{y} = W \underline{x} + R^{-1} \underline{z} \quad \Rightarrow \quad \hat{x}_k = \operatorname{sgn}(\widetilde{y}_k)$$

- Analogous to zero-forcing equalizers for ISI channels
- Pros: Does not require knowledge of users' powers
- Cons: Noise enhancement

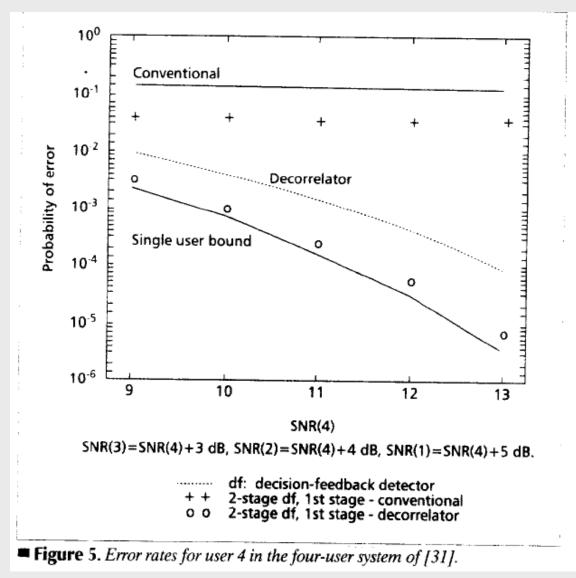

Multistage Detectors

• Decisions produced by 1st stage are $\hat{x}_1(1), \hat{x}_2(1)$

• 2nd stage:


$$\widehat{x}_1(2) = \operatorname{sgn}[y_1 - rc_2\widehat{x}_2(1)]$$
 $\widehat{x}_2(2) = \operatorname{sgn}[y_2 - rc_1\widehat{x}_1(1)]$

and so on...



Decision-Feedback Detectors

- Characterized by two matrix transformation: forward filter and feedback filter
- Whitening filter yields a lower triangular MAI matrix
- Performance similar to that of the decorrelator

DFD Performance

Successive Interference Cancellers

- Successively subtracting off the strongest remaining signal
 - Cancelling the strongest signal has the most benefit
 - Cancelling the strongest signal is the most reliable cancellation
- An alternative called the *Parallel Interference Cancellers* simultaneously subtract off all of the users' signals from all of the others
 - works better than SIC when all of the users are received with equal strength (e.g. under power control)

Performance of MUD

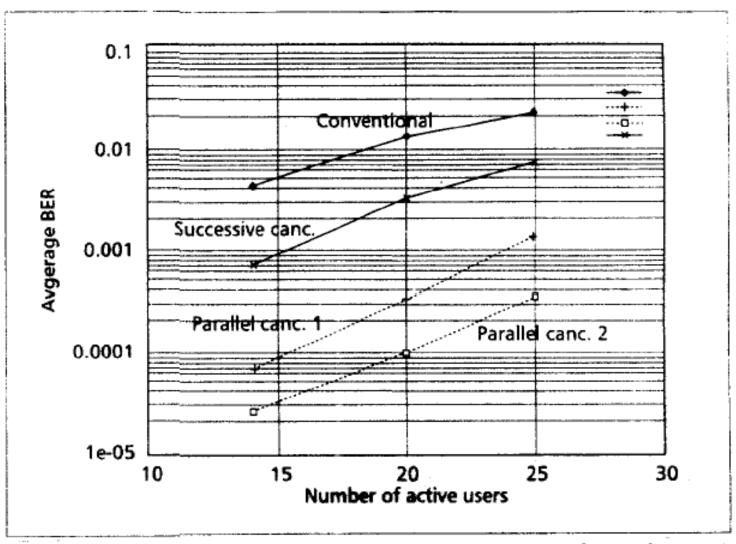
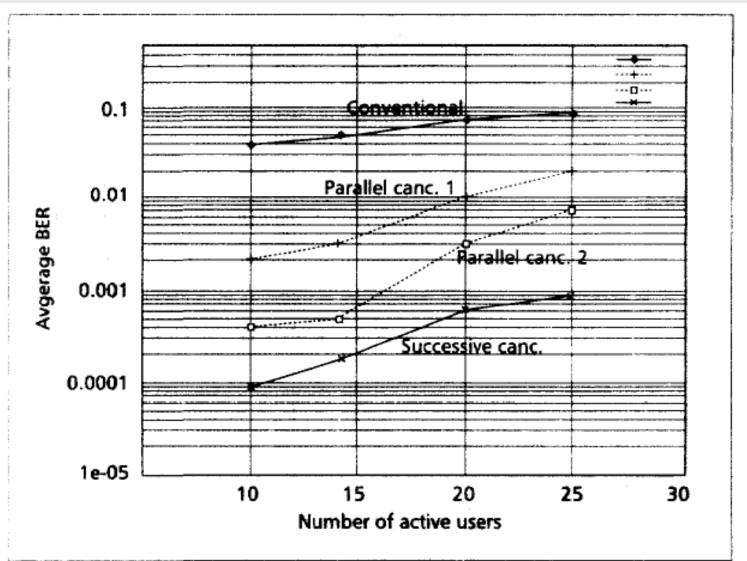



Figure 6. BER vs. no. of active users under ideal power control (asynchronous).

Performance of MUD (2)

Figure 7. BER vs. no. of active users under Rayleigh fading (asynchronous).

Limitations of MUD

- Issues in practical implementation
 - Processing complexity
 - Processing delay
 - Sensitivity and robustness
- Limitations of MUD
 - Potential capacity improvements in cellular systems are not enormous but certainly nontrivial (2.8x upper bound)
 - Capacity improvements only on the uplink would only be partly used anyway in determining overall system capacity
 - Cost of doing MUD must be as low as possible so that there is a performance/cost tradeoff advantage

Conclusion

- There are significant advantages to MUD which are, however, bounded and a simple implementation is needed
- Current investigations involve implementation and robustness issues
- MUD research is still in a phase that would not justify to make it a mandatory feature for 3G WCDMA standards
- Currently other techniques such as smart antenna seem to be more promising